Improved Blob-Based Feature Detection and Refined Matching Algorithms for Seismic Structural Health Monitoring of Bridges Using a Vision-Based Sensor System

Author:

Ngeljaratan Luna1ORCID,Moustafa Mohamed A.23,Sumarno Agung1,Prasetyo Agus Mudo1,Sari Dany Perwita1ORCID,Maidina Maidina1

Affiliation:

1. Research Center for Structural Strength Technology, National Research and Innovation Agency, BJ Habibie Science and Technology Center, Gedung 220, Setu, Tangerang Selatan 15314, Indonesia

2. Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA

3. Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates

Abstract

The condition and hazard monitoring of bridges play important roles in ensuring their service continuity not only throughout their entire lifespan but also under extreme conditions such as those of earthquakes. Advanced structural health monitoring (SHM) systems using vision-based technology, such as surveillance, traffic, or drone cameras, may assist in preventing future impacts due to structural deficiency and are critical to the emergence of sustainable and smart transportation infrastructure. This study evaluates several feature detection and tracking algorithms and implements them in the vision-based SHM of bridges along with their systematic procedures. The proposed procedures are implemented via a two-span accelerated bridge construction (ABC) system undergoing a large-scale shake-table test. The research objectives are to explore the effect of refined matching algorithms on blob-based features in improving their accuracies and to implement the proposed algorithms on large-scale bridges tested under seismic loads using vision-based SHM. The procedure begins by adopting blob-based feature detectors, i.e., the scale-invariant feature transform (SIFT), speeded-up robust features (SURF), and KAZE algorithms, and their stability is compared. The least medium square (LMEDS), least trimmed square (LTS), random sample consensus (RANSAC), and its generalization maximum sample consensus (MSAC) algorithms are applied for model fitting, and their sensitivity for removing outliers is analyzed. The raw data are corrected using mathematical models and scaled to generate displacement data. Finally, seismic vibrations of the bridge are generated, and the seismic responses are compared. The data are validated using target-tracking methods and mechanical sensors, i.e., string potentiometers. The results show a good agreement between the proposed blob feature detection and matching algorithms and target-tracking data and reference data obtained using mechanical sensors.

Funder

US Department of Transportation Accelerated Bridge Construction University Transportation Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3