A Discussion Regarding the Measurement of Ventilation Rates Using Tracer Gas and Decay Technique

Author:

Almeida Ricardo M. S. F.,Barreira EvaORCID,Moreira Pedro

Abstract

The measurement of ventilation rates is crucial in understanding buildings’ performances, but can be a rather complex task due to the time-dependency of wind and buoyancy forces, which are responsible for the pressure differences that induce air movement across the envelope. Thus, assessing air change rate through one-time measurements during brief periods of time may not be a reliable indicator. In this paper, the variability in the measurement of ventilation rates using the decay technique was evaluated. To that end, two compartments of a typical single-family detached dwelling were selected as a case study and 132 tests were performed, considering two different boundary conditions (door closed and door open). This work allowed the large variability of the results to be highlighted, as the coefficient of variation ranged from 20% to 64%. Wind speed had a key effect on the results, especially because during the measurements indoor–outdoor temperature differences were not so significant. The possibility of using occupant-generated carbon dioxide as tracer gas was also analyzed, but problems of cross-contamination were identified.

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Reference40 articles.

1. Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings;Off. J. Eur. Communities,2003

2. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast);Off. J. Eur. Communities,2010

3. The energy impact of infiltration: a study on buildings located in north central Spain

4. AIVC Air Infiltration and Ventilation Centrewww.aivc.org

5. Experimental analysis of air tightness in Mediterranean buildings using the fan pressurization method

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3