Seismic Resistant Bridge Columns with NiTi Shape Memory Alloy and Ultra-High-Performance Concrete

Author:

Aryan Hadi

Abstract

Reinforced concrete bridge columns often endure significant damages during earthquakes due to the inherent deficiencies of conventional materials. Superior properties of the new materials such as shape memory alloy (SMA) and ultra-high-performance concrete (UHPC), compared to the reinforcing steel and the normal concrete, respectively, are needed to build a new generation of seismic resistant columns. Application of SMA or UHPC in columns has been separately studied, but this paper aims to combine the superelastic behavior of NiTi SMA and the high strength of UHPC, in order to produce a column design with minimum permanent deformation and high load tolerance subjected to strong ground motions. Additionally, the excellent corrosion resistance of NiTi SMA and the dense and impermeable microstructure of UHPC ensure the long-term durability of the proposed earthquake resistant column design. The seismic performance of four columns, defined as steel reinforced concrete (S-C), SMA reinforced concrete (SMA-C), SMA reinforced UHPC (SMA-UHPC), and reduced SMA reinforced UHPC (R-SMA-UHPC) is analyzed through a loading protocol with up to 4% drift cycles. The use of NiTi SMA bars for the SMA reinforced columns is limited to the plastic hinge region where permanent deformations happen. All the columns have 2.0% reinforcement ratio, except the R-SMA-UHPC column that has a 1.33% reinforcement ratio to optimize the use of SMA bars. Unlike the S-C column that showed up to 68% residual deformation compared to peak displacement during the last loading cycle the SMA reinforced columns did not experience permanent deformation. The SMA-C and R-SMA-UHPC columns showed similar strengths to the S-C column, but with about 5.0- and 6.5-times larger ductility, respectively. The SMA-UHPC column showed 30% higher strength and 7.5 times larger ductility compared to the S-C column.

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3