Co-Active Prioritization by Means of Contingency Tables for Analyzing Element-level Bridge Inspection Results and Optimizing Returns

Author:

Oyegbile O. Brian,Chorzepa Mi G.ORCID

Abstract

An efficient prioritization of bridge actions such as preventive maintenance, rehabilitation, or replacement (MRR) that accounts for inter-element interactions will optimize a long-term return on investments (ROI) in terms of service life extension. What enables this return is the assignment of “Co-Active” elements. This study develops a methodology based on the concept of “Co-Active elements”. The word, “Co-Active”, is used to represent a small group of elements that act together to improve the Bridge Health Index (BHI). The Co-Active parameters for three major bridge groups in Georgia are presented. To illustrate how the Co-Active model works, 1439 in-service bridges’ Element-Level Bridge Inspection results from the state of Georgia in U.S.A., representing a concrete bridge group with six Co-Active elements, are studied. The analysis results indicate that the overall BHI improves by 20% over the subsequent 20 years when expansion joints are replaced. The effects of Co-Active elements on the BHI predictions are quantifiable and depend on factors such as the timing of MRR, the condition of bridge elements as well as the type of MRR. Furthermore, it is concluded that inter-dependent relationships among Co-Active elements are highly affected by Co-Active coefficients. They increase when the degree of dependency among elements increases. Finally, the proposed bridge Co-Active prioritization analysis accounts for a performance target and associated gaps and thus is able to identify critical elements that affect bridge service life the most.

Funder

Georgia Department of Transportation

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Reference44 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3