Machine Learning and Optimality in Multi Storey Reinforced Concrete Frames

Author:

Bekas Georgios,Stavroulakis Georgios

Abstract

The present study investigates the potential of the implementation of machine learning techniques in optimized multi storey reinforced concrete frames. The variables that are taken into account in the objective function of the optimization problem are the following: the frame type (frame bay length optimality) and dimensioning of the cross sections. The objective function has the goal of attaining a minimum cost design based on market data, after a structural analysis of the frames. A number of optimized examples with widely encountered cases of total lengths of frames and with various loadings are presented. Modeling is based on Eurocode 2. Optimization takes place with the use of evolutionary algorithms. The optimized results are subjected to predictive modeling based on neural networks. The objective of the study is to create predictive models with the aim of minimizing the usage of scarce resources.

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Reference21 articles.

1. Structural Analysis;Hibbeler,2006

2. Cost Optimization of Structures: Fuzzy Logic, Genetic Algorithms and Parallel Computing;Adeli,2006

3. Minimum cost versus minimum weight of prestressed slabs;Naaman;J. Struct. Div. ASCE,1976

4. Sensitivity Study of Optimum RC Restrained End T‐Sections

5. Optimization and sensitivity of prestressed concrete beams

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3