Forecasting the Capacity of Open-Ended Pipe Piles Using Machine Learning

Author:

Ozturk Baturalp,Kodsy AntonioORCID,Iskander MaguedORCID

Abstract

Pile design is an essential component of geotechnical engineering practice, and pipe piles, in particular, are increasingly being used for the support of a variety of infrastructure projects. These piles are being used with dimensions that exceed those used in the development of the most widely used design approaches. At the same time, the growth in pile dimensions calls for the evolution of the state-of-the-art at a similar pace. The objective of this study is to provide an improved prediction of pile capacity. A database of 112 load tests on pipe piles ranging in diameter from 10 to 100 in. (0.25–2.5 m) and in length from 10 to 320 ft. (3–98 m) was employed in this study. First, design capacities were computed using four popular design methods and compared to capacities interpreted from a load test. For the employed dataset, the Revised Lambda method was found to best predict capacities of pipe piles obtained from a load test, among the four examined methods, and was thus employed as a reference standard for assessing the performance of ML methods. Next, eight ML regression models were trained to compute the capacity of pipe piles. Several trained ML models predicted capacities for the testing data set on par with the Revised Lambda method, and three were selected for further investigation. A variety of pile dimensions and soil properties were examined as input properties for ML and the trained models performed surprisingly well with only the pile dimensions used as input. In addition, ML models exhibited satisfactory diameter and length effects, which have been areas of concern for some traditional design approaches. The work thus demonstrates the feasibility of employing machine learning (ML) for determining the capacity of pipe piles. A web application was also developed as a tool for forecasting the capacity of pipe piles using ML.

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Reference47 articles.

1. NCHRP (National Cooperative Highway Research Program) (2015). National Cooperative Highway Research Program (NCHRP) Synthesis 478: Design and Load Testing of Large Diameter Open-Ended Driven Piles, National Academies Press.

2. Use of Machine Learning Methods for Classification of Sand Particles;Li;Acta Geotech.,2022

3. Machine learning tools for mineral recognition and classification from Raman spectroscopy;Carey;J. Raman Spectrosc.,2015

4. Modelling of shallow landslides with machine learning algorithms;Liu;Proc. Geosci. Front.,2021

5. Machine learning applications in minerals processing: A review;McCoy;Miner. Eng.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3