Railway Bridge Geometry Assessment Supported by Cutting-Edge Reality Capture Technologies and 3D As-Designed Models

Author:

Cabral Rafael1ORCID,Oliveira Rogério2,Ribeiro Diogo2ORCID,Rakoczy Anna M.3ORCID,Santos Ricardo2,Azenha Miguel4ORCID,Correia José1ORCID

Affiliation:

1. CONSTRUCT, Department of Civil Engineering, University of Porto, 4200-465 Porto, Portugal

2. CONSTRUCT, Department of Civil Engineering, Polytechnic of Porto, 4249-015 Porto, Portugal

3. Department of Civil Engineering, Warsaw University of Technology, 00-664 Warsaw, Poland

4. ISISE, ARISE, Department of Civil Engineering, University of Minho, 4800-058 Guimarães, Portugal

Abstract

Documentation of structural visual inspections is necessary for its monitoring, maintenance, and decision about its rehabilitation, and structural strengthening. In recent times, close-range photogrammetry (CRP) based on unmanned aerial vehicles (UAVs) and terrestrial laser scanners (TLS) have greatly improved the survey phase. These technologies can be used independently or in combination to provide a 3D as-is image-based model of the railway bridge. In this study, TLS captured the side and bottom sections of the deck, while the CRP-based UAV captured the side and top sections of the deck, and the track. The combination of post-processing techniques enabled the merging of TLS and CRP models, resulting in the creation of an accurate 3D representation of the complete railway bridge deck. Additionally, a 3D as-designed model was developed based on the design plans of the bridge. The as-designed model is compared to the as-is model through a 3D digital registration. The comparison allows the detection of dimensional deviation and surface alignments. The results reveal slight deviations in the structural dimension with a global average value of 9 mm.

Funder

Base Funding

Programmatic Funding

ISISE

ARISE

Portuguese Science Foundation

bilateral agreement FCT-NAWA

European Regional Development Fund

Recovery and Resilience Plan

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3