Transportation Asset Management Decision Support Tools: Computational Complexity, Transparency, and Realism

Author:

Atolagbe Babatunde1,McNeil Sue12ORCID

Affiliation:

1. Department of Civil Engineering, University of Delaware, Newark, DE 19716, USA

2. Research Center for Integrated Transport Innovation, University of New South Wales, Kensington, NSW 2052, Australia

Abstract

Asset management decision support tools determine which action (maintenance, rehabilitation, or reconstruction) is applied to each facility in a transportation network and when. Sophisticated tools recognize uncertainties and consider emerging priorities. However, these tools are often computationally complex and lack transparency, the models are difficult to evaluate, and the outputs are challenging to validate. This paper explores computational complexity, transparency, and realism in transportation asset management decision support tools to better understand how to select the right tools for a particular context. Descriptions of how state departments of transportation in the United States make use of optimization in their mandated transportation asset management plans to make decisions are used to understand the needs of states. This qualitative analysis serves as a review of the goals and practices of state agencies. An existing asset management tool is then used to demonstrate the tradeoffs involved in accurately capturing the decision-making process and complexity. The results provide examples of strategies that agencies can use when selecting decision support tools and for researchers and tool developers working toward developing the right tool for an application.

Funder

United States Department of Transportation University Transportation Center

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3