Integrating Geographic Information Systems and Augmented Reality for Mapping Underground Utilities

Author:

Fenais Amr,Ariaratnam Samuel T.,Ayer Steven K.,Smilovsky Nikolas

Abstract

Underground infrastructure is a critical component of the basic utility services provided to society. The single largest threat to the safety of underground utility lines is being struck by construction earthwork projects. One of the causes of this problem is miscommunication between utility owners and contractors. Therefore, it is vitally important to coordinate resources, share information, and ensure efficient communication between construction personnel and utility owners. Geographic information systems (GIS) provide a solution for interoperability in the construction industry. Applying such technologies in the field of underground construction requires accurate and up-to-date information. Augmented reality (AR) has been identified as a technique that could enhance information extraction from the virtual world to the real world and improve the access and utilization of information. However, there is currently limited research that has integrated AR and GIS and evaluated the effectiveness and usability of the combination in this domain. The main objective of this research was to develop an integrated AR-GIS for mapping and capturing underground utilities using a mobile device. The data are shared instantaneously with other stakeholders through a cloud-based system. In order to achieve these objectives, a design research approach was utilized to develop and evaluate a mobile extended-reality (XR-GIS) application. Validation of the XR-GIS was conducted through a focus group discussion and a questionnaire. The results revealed that 86% of the participants validated the system’s adaptivity to the underground construction. We can conclusively say that this research has produced an efficient solution for data collection and sharing among stakeholders in the underground construction industry.

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Reference59 articles.

1. SHRP 2 Tools for underground utility location, data collection, and analysis;Starnes;Strateg. Highw. Res. Program,2012

2. Underground space as an urban indicator: Measuring use of subsurface

3. Real-Time Hybrid Virtuality for Prevention of Excavation Related Utility Strikes

4. Damage Information Reporting Tool;Lyle,2017

5. What Do Utility Strikes Really Cost?;Makana,2016

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3