Re-Synthesis of CIGS Nanocrystallites Using Oxidation Roasting Pretreatment from Spent CIGS Targets

Author:

Hsiang Hsing-I1ORCID,Chen Chih-Cheng2,Chiang Chung-Yen1

Affiliation:

1. Department of Resources Engineering, National Cheng Kung University, Tainan 70101, Taiwan

2. Department of Mechanical Engineering, Far East University, Tainan 744, Taiwan

Abstract

The CIGS (Cu(In, Ga)Se2) thin film solar cell sputtering process utilizes only 30% of the original target. The remaining 70% of the target must be recycled to achieve In, Ga, and Se rare metal sustainable use. It is, therefore, very important to establish spent CIGS target recycling technology to reduce environmental damage. CIGS is a tetrahedrally bonded semiconductor with a chalcopyrite crystal structure. Chalcopyrite is resistant to attack by the oxidants used in dissolution due to forming a passivation surface layer. Therefore, increasing the reaction temperature, lixiviating agent, and oxidant concentrations is necessary to enhance CIGS dissolution. The oxidation roasting pretreatment effects on the recovery and leaching of spent CIGS targets are investigated in this study. The results indicated that the proper oxidation roasting pretreatment process could significantly enhance CIGS leaching, reducing costs and increasing the reaction rate. This can be explained by the fact that the chalcopyrite structure was decomposed and transformed into easier dissolvable Cu2SeO4, In2O3, and amorphous Ga2O3 after roasting in the air. Cu, In, and Ga recoveries can reach above 99.9% by leaching CIGS roasted at 500 °C in 1 M H2SO4 at 60 °C for 1 h. As the roasting temperature was increased to 600 °C, the Ga recovery rate decreased due to the formation of difficult dissolvable β-Ga2O3. Mono-dispersed, near-stoichiometric CIGS nanoparticles with a mean crystallite size of 9 nm can be obtained using a direct recycling process combining oxidation, leaching, and re-synthesis processes.

Funder

Ministry of Economic Affairs of the Republic of China

Ministry of Science and Technology Taiwan

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3