Multi-Response Optimization of Milling Process of Hardened S50C Steel Using SVM-GA Based Method

Author:

Nguyen Thanh-Cong12ORCID,Tien Dung2,Nguyen Ba-Nghien3,Hsu Quang-Cherng1ORCID

Affiliation:

1. Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, 415 Chien-Kung Road, Kaohsiung City 80778, Taiwan

2. Faculty of Mechanical Engineering, Hanoi University of Industry, No. 298, Cau Dien Street, Bac Tu Liem District, Hanoi 11950, Vietnam

3. Faculty of Information Technology, Hanoi University of Industry, No. 298, Cau Dien Street, Bac Tu Liem District, Hanoi 11950, Vietnam

Abstract

This study aims to find the optimized parameters for surveying the milling process of S50C steel in a minimum quantity lubrication (MQL) environment using a support vector machine-genetic algorithm (SVM-GA). Based on the experimental matrix designed by the Taguchi method, surface roughness and cutting force data were collected corresponding to each experiment with changes in input parameters such as cutting speed, tooth feed rate, and axial depth of cut, along with changes in two parameters of the minimum lubrication system: flow rates and injection pressure. Through analysis by the SVR-NSGAII method, the study obtained the optimal parameters of cutting and lubricating conditions when prioritizing either surface roughness or focusing on the cutting force; however, the most comprehensive result is believed to be achieved by balancing these two factors. So, when striving for the neutral value of both output parameters, which are surface roughness (µm) and cutting force (N), the optimum parameters including injection pressure (MPa), flow rates (mL/h), cutting speed (m/min), feed rate (mm/tooth), and axial depth of cut (mm) are proposed.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference38 articles.

1. Richt, C. (2023, April 16). Hard turn toward efficiency. Gear Solutions, 1 April 2009, pp. 22–30. Available online: https://gearsolutions.com/features/a-hard-turn-toward-efficiency/.

2. The prediction and optimization of surface roughness in grinding of S50C carbon steel using minimum quantity lubrication of vietnamese peanut oil;Nguyen;J. Appl. Eng. Sci.,2021

3. Investigation on CR, MRR and SR of wire electrical discharge machining (WEDM) on high carbon steel S50C;Abdullah;J. Teknol.,2015

4. Optimization of cutting conditions for minimum residual stress, cutting force and surface roughness in end milling of S50C medium carbon steel;Masmiati;Measurement,2016

5. Dubey, V., Sharma, A.K., Vats, P., Pimenov, D.Y., Giasin, K., and Chuchala, D. (2021). Study of a multicriterion decision-making approach to the MQL turning of AISI 304 steel using hybrid nanocutting fluid. Materials, 14.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3