Hydrogen Solid State Storage on MgH2 Compacts for Mass Applications

Author:

Fruchart Daniel12,Jehan Michel2,Skryabina Nataliya2,de Rango Patricia1ORCID

Affiliation:

1. Institute Néel, CNRS & Université Grenoble Alpes, CEDEX 9, 38042 Grenoble, France

2. JOMI-LEMAN SA, 1115 Route de St Thomas, 26190 La Motte Fanjas, France

Abstract

The mass storage of hydrogen is a challenge considering large industrial applications and continuous distribution, e.g., for domestic use as a future energy carrier that respects the environment. For a long time, molecular hydrogen was stored and distributed, either as a gas (pressurized up to 75 MPa) or as a cryogenic liquid (20.4 K). Furthermore, the atomic storage of hydrogen in the solid-state form via metallic or covalent compounds is still the subject of intense research and limited to a small scale for some practical developments. In addition, other type H chemical storage routes are being tested, such as ammonia and LOHC (Liquid Organic Hydrogen Carrier), etc. In any case, the main constraint remains security. However, Hydrogen Solid State Storage (HSSS) using MgH2 bodies has been shown to be feasible in terms of process and safety. Furthermore, its intrinsic volumetric densification was proven to be much better performing with 106:70:45 kgH2/m3 for solid (RT):LH (20.4 K):gas (75 MPa), respectively. Very early on, fairly reactive MgH2-based pellets were produced (for max. ~27 tons/year) at McPhy Energy using a series of unique and self-built installations. Thus, the design of large instrumented reservoirs was undertaken thanks to fundamental research first carried out at the CNRS. So, prototypes of storage units from 100 to ~5500 kWh have been produced. However, McPhy took other routes a few years ago (smelting and refueling stations) because the HSSS market was not merging at that time. Today, a new operator, Jomi–Leman, therefore, decided to try the challenge again focusing on applications with on-site production and mass HSSS.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference55 articles.

1. Formation and decomposition of magnesium hydride;Vigeholm;J. Less Common Met.,1983

2. Magnesium mechanical alloys for hydrogen storage;Ivanov;J. Less Common Met.,1987

3. Formation of metal hydrides by mechanical alloying;Chen;J. Alloys Compd.,1995

4. Schulz, R., Boily, S., Zaluski, L., Zaluska, A., Tessier, P., and Ström-Olsen, J. (1995). Nanocrystalline materials for hydrogen storage. Innov. Met. Mater., 529–535.

5. Nanocrystalline metal hydrides;Zaluski;J. Alloys Compd.,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3