Novel Approach to Prepare Magnesium and Mg-Al Alloy from Magnesia by Using the Closed Microwave Aluminothermic Method

Author:

Zhang Teng1,Wang Miao2,Niu Libin1,Zhang Jumei1,Zhang Huihui1,Zhang Mengchun1

Affiliation:

1. School of Material Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

2. School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

Herein, we report a novel approach to obtaining magnesium and nanocrystal Mg-Al alloy from magnesia using a closed microwave aluminothermic method in order to solve the problems of high energy consumption, high pollution, and low productivity in the process of magnesium and its alloy production. The main idea of the paper is to design a technique for the preparation of magnesium–aluminum alloy during the reduction process of MgO directly under atmospheric pressure. Based on this experimental idea, we have established a closed microwave aluminothermic reduction reactor. The great advantage of the reaction device is that it can make the reaction material heat up quickly to the reaction temperature in the microwave heating process and produce high-pressure magnesium vapor, which reacts with aluminum dramatically to form Mg-Al alloy under microwave irradiation. By the calculation of the electromagnetic field of the reaction device and sample using ANSYS electronics desktop 2018, the optimum microwave heating conditions for samples have been established. Based on the calculation results, we demonstrate that magnesium and its alloy are prepared successfully by using this method. In addition, the reduction rate of MgO is greatly improved, which is higher up to 79.97 Wt% when the reduction time is 30 min, at 1273 K, and the Mg2Al3 and MgAl alloy is formed during the reduction process as well. Moreover, the formation mechanism of Mg-Al alloy during the reduction process under microwave irradiation was discussed further. Our findings could provide a new approach, insights, and research directions to obtain magnesium and Mg-Al alloy directly from magnesia under normal pressure.

Funder

Special research project of Shaanxi Education Department, China

National Natural Science Foundation of China

Key research and development project of Shaanxi Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3