Effect of Heat Treatment on the Corrosion Resistance of AlFeCoNiMo0.2 High-Entropy Alloy in NaCl and H2SO4 Solutions

Author:

Peng Yuhan12,Zhou Ge12,Han Jinke12,Li Jianlin12,Zhang Haoyu12ORCID,Zhang Siqian12,Lin Li12,Chen Lijia12,Cao Xue3

Affiliation:

1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China

2. Shenyang Key Laboratory of Advanced Structural Materials and Applications, Shenyang University of Technology, Shenyang 110870, China

3. Beijing Institute of Aeronautical Materials of China Aviation Development, Beijing 100094, China

Abstract

The effects of casting and different heat treatment processes on the corrosion resistance of AlFeCoNiMo0.2 high-entropy alloy in 3.5% NaCl (mass fraction) and 0.5 mol/L H2SO4 solutions were investigated using dynamic potential polarization curves, SEM, XRD, XPS, and other test methods. The results show that in the Cl− environment, the cast alloy has the lowest corrosion current density and higher corrosion resistance compared to the annealed alloy. The elements Al and Mo are severely segregated in the crystal and in the grain boundaries, where galvanic corrosion occurs, and the Al-rich phase produces pitting corrosion in the crystal. The main components of its passive film are oxides of Al, Fe, Co, and Mo, and oxides and hydroxides of Ni. In the SO42− environment, the best corrosion resistance is achieved in the 900 °C annealed state of the alloy. Electrochemical test results show that the alloys all undergo secondary passivation, producing two successive product films to protect the metal matrix. Preferential corrosion areas are concentrated in the molybdenum-rich grain boundaries and nearby dendritic regions, reducing the corrosion resistance of the alloy. The main components of the passive film are oxides of Al and Mo; oxides of Fe, Co, Ni; and hydroxides. The Mo element in the passive film prevents the activated dissolution of Fe and produces the protective component MoO3, which inhibits the dissolution of the alloy and improves the stability of the passive film. The presence of Mo elements increases the selective dissolution of Fe, and the aggregation of Mo elements at grain boundaries after annealing weakens the corrosion resistance of the alloy and leads to the dissolution of the passive film. The main components of the passive film are oxides of Al and Mo; oxides of Fe, Co, Ni; and hydroxides.

Funder

Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3