Corrosion of Copper in a Tropical Marine Atmosphere Rich in H2S Resulting from the Decomposition of Sargassum Algae

Author:

Ahmed Mahado Said1,Lebrini Mounim1,Lescop Benoit2,Pellé Julien2,Rioual Stéphane2ORCID,Amintas Olivia3,Boullanger Carole3,Roos Christophe1

Affiliation:

1. Laboratoire des Matériaux et Molécules en Milieu Agressif, L3MA EA7526, Campus de Schœlcher, Université des Antilles, 97233 Schoelcher, Martinique, France

2. Lab-STICC, University Brest, CNRS, UMR 6285, F-29200 Brest, France

3. Madinin’air, 31 Rue Professeur Raymond Garcin, 97200 Fort-de-France, Martinique, France

Abstract

The atmospheric corrosion of copper exposed in Martinique (Caribbean Sea) for 1 year was reported. This island suffered the stranding of sargassum algae, which decompose and release toxic gases such as hydrogen sulfide (H2S) or ammonia (NH3). Four sites in Martinique (France) more or less impacted by sargassum algae strandings were selected. The corrosion rate was studied via mass loss determination. The morphology and properties of the corrosion products were determined using Scanning Electron Microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The samples were exposed for up to 12 months. The mass loss results after 1-year exposure were from 4.8 µm for the least impacted site to 325 µm for the site most affected by sargassum algae. This very high value proves that the presence of sargassum algae caused a significant degradation of copper. The morphological structures and properties of the corrosion products obtained at the impacted and non-impacted sites differed significantly. In the absence of sargassum algae, classical corrosion products of copper were reported such as Cu2O and Cu2Cl(OH)3. In the sites near the stranding of the sargassum algae, the CuS product is the main corrosion product obtained, but copper hydroxylsulfate is created.

Funder

Territorial Authority of Martinique (CTM) and the French National Research Agency

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3