Convolution Neural Network Fusion Lock-In Thermography: A Debonding Defect Intelligent Determination Approach for Aviation Honeycomb Sandwich Composites (HSCs)

Author:

Wang Xinjian1,Gao Mingyu23,Wang Fei23ORCID,Yang Feng23,Yue Honghao23,Liu Junyan23

Affiliation:

1. Sichuan Institute of Aerospace Systems Engineering, Chengdu 610100, China

2. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

3. State Key Laboratory of Robotics and System (HIT), Harbin Institute of Technology, Harbin 150001, China

Abstract

This report is on convolution neural network (CNN) fusion lock-in thermography, which can implement the intelligent identification of defects for aviation honeycomb sandwich composites (HSCs). First, HSCs specimens with subsurface delamination defects were fabricated and stimulated by halogen lamps according to sinusoidal modulation, and the defects were reliably inspected using lock-in thermography. The amplitude and phase images (commonly referred to as feature images) were obtained by using a digital lock-in correlation algorithm. Furthermore, these feature images were changed into gray or color-level image formalism datasets, which is pre-processed in ways including contrast enhancement, threshold segmentation as well as mosaic data augmentation. Finally, the four-layer feature pyramid structure and ransformer are combined and introduced to the popular YOLOv5 CNN model, and a YOLOLT CNN model is formed to realize the defect identification. The average precision (AP) in the defect identification of HSCs in complex environments (contains noise and other objects) reached 93.2% and achieved an average recognition speed of 0.6 s/image.

Funder

National Natural Science Foundation of China

Self-planned Task of State Key Laboratory of Robotics and System

China Post-doctoral Innovation Talent Support Program of China

China Postdoctoral Science Foundation

Heilongjiang Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3