Correlating Experimental with Theoretical Studies for a New Ionic Liquid for Inhibiting Corrosion of Carbon Steel during Oil Well Acidification

Author:

Toghan Arafat12ORCID,Fawzy Ahmed34,Alakhras Abbas I.1,Sanad Moustafa M. S.5,Khairy M.16,Farag Ahmed A.7ORCID

Affiliation:

1. Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia

2. Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt

3. Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia

4. Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

5. Central Metallurgical Research & Development Institute, P.O. Box 87, Helwan 11421, Cairo, Egypt

6. Chemistry Department, Faculty of Science, Benha University, Benha 13511, Egypt

7. Egyptian Petroleum Research Institute (EPRI), Cairo 11727, Egypt

Abstract

During the mandatory acidification process in the oil and gas industry, carbon steel unfortunately suffers significant corrosion damage. From this perspective, for the first time a new ionic liquid called 1-(2-(4-bromophenyl)-2-oxoethyl)-4-(tert-butyl)pyridin-1-ium bromide (ILB) has been used as an effective inhibitor for the carbon steel corrosion in aggressive HCl solution (15%) at 298 K. The experiments were managed with a number of different chemical and electrochemical techniques including weight loss, potentiodynamic polarization (PDP), and impedance spectroscopy (EIS). ILB has good inhibitory performance as an acidizing corrosion inhibitor for carbon steel even at low dosing levels of 1 × 10−3 M. The findings were promising as an inhibition efficiency of about 97% was achieved when ILB was added at low concentrations to the corrosive media. EIS results showed a significant rise in charge transfer resistance (Rct) values with increasing doses of ILB. PDP studies confirmed that ILB is a mixed type and obey Langmuir adsorption isotherm with chemical nature. The metal surface morphologies were inspected using a Scanning Electron Microscope (SEM) and an Atomic Force Microscope (AFM). Additionally, Density Functional Theory (DFT) and Molecular Dynamic Simulation (MDS) indicates that ILB molecules function as inhibitors more successfully. There is a high degree of concordance between practical and theoretical studies.

Funder

Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3