Combining 3D Printing and Electrochemical Deposition for Manufacturing Tailor-Made 3D Nickel Foams with Highly Competitive Porosity and Specific Surface Area Density

Author:

Arnet Robin1,Kesten Oliver1,El Mofid Wassima1,Sörgel Timo1

Affiliation:

1. Center for Electrochemical Surface Technology ZEO, Aalen University of Applied Sciences, Beethovenstr. 1, 73430 Aalen, Germany

Abstract

One of the most promising and heavily researched energy storage systems due to their high energy density, rate capability and extended cycle life are lithium-ion batteries. Their performance and efficiency are nonetheless strongly dependent on their constituent materials and design, including the current collectors. One attractive approach in this respect is the use of metal foams as an alternative to the conventional current collectors. This concept is therefore intended to increase the current collectors’ specific surface area and therefore load more active material by nominal area while keeping the cell architectures simple and less costly. In the present work, nickel is chosen as a model system for a proof of concept of a novel manufacturing method for nickel foams using a combination of 3D printing, coating and electroplating. The purpose is to create geometrically well-defined hollow structures with high porosity and specific surface area density that can rival and partially outperform the commercially available nickel foams. To this end, a 3D printer is used to create geometrically flexible and well-defined open-pored disks of HIPS (high-impact polystyrene), which are then spray coated with a graphite-based conducting layer and subsequently electroplated with a 5–30 µm thin layer of nickel from an additive-free nickel sulfamate electrolyte. Following the coating process, the support structure is dissolved with toluene, resulting in structures with a unique combination of porosity in the range of 92.3–99.1% and an ultra-high specific surface area density up to 46 m2/kg. Morphological characterization by light and scanning electron microscopy has proven that the temporarily required polymer substrate can be mildly and completely removed by the suggested room temperature dissolution process.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3