Abstract
With the advent of modern technologies, the healthcare industry is moving towards a more personalised smart care model. The enablers of such care models are the Internet of Things (IoT) and Artificial Intelligence (AI). These technologies collect and analyse data from persons in care to alert relevant parties if any anomaly is detected in a patient’s regular pattern. However, such reliance on IoT devices to capture continuous data extends the attack surfaces and demands high-security measures. Both patients and devices need to be authenticated to mitigate a large number of attack vectors. The biometric authentication method has been seen as a promising technique in these scenarios. To this end, this paper proposes an AI-based multimodal biometric authentication model for single and group-based users’ device-level authentication that increases protection against the traditional single modal approach. To test the efficacy of the proposed model, a series of AI models are trained and tested using physiological biometric features such as ECG (Electrocardiogram) and PPG (Photoplethysmography) signals from five public datasets available in Physionet and Mendeley data repositories. The multimodal fusion authentication model shows promising results with 99.8% accuracy and an Equal Error Rate (EER) of 0.16.
Subject
Computer Networks and Communications
Reference62 articles.
1. Electrocardiogram Identification: Use a Simple Set of Features in QRS Complex to Identify Individuals;Nor;Proceedings of the Recent Advances in Information and Communication Technology 2016,2016
2. Toward end-to-end biomet rics-based security for IoT infrastructure
3. Broken Hearted: How to Attack ECG Biometrics;Eberz,2017
4. A Smart Biometric Identity Management Framework for Personalised IoT and Cloud Computing-Based Healthcare Services
5. A survey on continuous authentication methods in Internet of Things environment
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献