Analysis and Visualization of New Energy Vehicle Battery Data

Author:

Ren WenboORCID,Bian Xinran,Gong JiayuanORCID,Chen Anqing,Li Ming,Xia Zhuofei,Wang Jingnan

Abstract

In order to safely and efficiently use their power as well as to extend the life of Li-ion batteries, it is important to accurately analyze original battery data and quickly predict SOC. However, today, most of them are analyzed directly for SOC, and the analysis of the original battery data and how to obtain the factors affecting SOC are still lacking. Based on this, this paper uses the visualization method to preprocess, clean, and parse collected original battery data (hexadecimal), followed by visualization and analysis of the parsed data, and finally the K-Nearest Neighbor (KNN) algorithm is used to predict the SOC. Through experiments, the method can completely analyze the hexadecimal battery data based on the GB/T32960 standard, including three different types of messages: vehicle login, real-time information reporting, and vehicle logout. At the same time, the visualization method is used to intuitively and concisely analyze the factors affecting SOC. Additionally, the KNN algorithm is utilized to identify the K value and P value using dynamic parameters, and the resulting mean square error (MSE) and test score are 0.625 and 0.998, respectively. Through the overall experimental process, this method can well analyze the battery data from the source, visually analyze various factors and predict SOC.

Funder

This research was funded by Hubei University of Automotive Technology Doctor's Research Start-Up Fund

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference34 articles.

1. lmpacts and Uilization of Electric Vehicles Integration into Power Systems;Hu;Chin. Soc. Electr. Eng.,2012

2. Regulatory adaptation: Accommodating electric vehicles in a petroleum world;Nicholas;Energy Policy,2012

3. Market penetration speed and effects on CO2 reduction of electric vehicles and plug-in hybrid electric vehicles in Japan

4. Partial Decomposition for Distributed Electric Vehicle Charging Control Considering Electric Power Grid Congestion

5. Study and Recommendations of the Key Isues in Planning of Electric Vehicles’Charging Facilities;Xiangning;China Electrotech.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time Series Prediction of New Energy Battery SOC Based on LSTM Network;The Proceedings of the 5th International Conference on Energy Storage and Intelligent Vehicles (ICEIV 2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3