Electrochromism of Viologen/Polymer Composite: From Gel to Insulating Bulk for High-Voltage Applications

Author:

Nie Yongjie,Zhang Meng,Zhu YuanweiORCID,Jing Yu,Shi Wenli,Li Guoping,Chen Haopeng,Jiang Yihang,Zhao Xianping,Zhao Tengfei,Lu Guanghao,Li Shengtao

Abstract

Power equipment operates under high voltages, inducing space charge accumulation on the surface of key insulating structures, which increases the risk of discharge/breakdown and the possibility of maintenance workers experiencing electric shock accidents. Hence, a visualized non-equipment space charge detection method is of great demand in the power industry. Typical electrochromic phenomenon is based on redox of the material, triggered by a voltage smaller than 5 V with a continuous current in μA~mA level, which is not applicable to high electric fields above 106 V/m with pA~nA operation current in power equipment. Until now, no naked-eye observation technique has been realized for space charge detection to ensure the operation of power systems as well as the safety of maintenance workers. In this work, a viologen/poly(vinylidene fluoride-co-hexafluoropropylene)(P(VDF–HFP)) composite is investigated from gel to insulating bulk configurations to achieve high-voltage electrical-insulating electrochromism. The results show that viologen/P(VDF–HFP) composite bulk can withstand high electric fields at the 107 V/m level, and its electrochromism is triggered by space charges. This electrochromism phenomenon can be visually extended by increasing viologen content towards 5 wt.% and shows a positive response to voltage amplitude and application duration. As viologen/P(VDF–HFP) composite bulk exhibits a typical electrical insulating performance, it could be attached to the surface of insulating structures or clamped between metal and insulating materials as a space charge accumulation indicator in high-voltage power equipment.

Funder

Basic Research Plan of Yunnan Province

China Southern Power Grid

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3