Control of Transformerless Inverter-Based Two-Stage Grid-Connected Photovoltaic System Using Adaptive-PI and Adaptive Sliding Mode Controllers

Author:

Zeb KamranORCID,Nazir Muhammad SaqibORCID,Ahmad IftikharORCID,Uddin WaqarORCID,Kim Hee-JeORCID

Abstract

To enhance the move towards a sustainable society, the solar Photovoltaic (PV) industry and its applications are progressing at a rapid rate. However, the associated issues need to be addressed when connecting PV to the grid. Advanced and efficient controllers are required for the DC link to control the second harmonic ripple and current controllers to inject quality active and reactive power to the grid in the grid-connected PV system. In this paper, DC-link voltage, active power, and reactive power are successfully controlled in stationary reference using Adaptive-PI (A-PI) and Adaptive-Sliding Mode Controller (A-SMC) for a 3 kW single-phase two-stage transformerless grid-connected inverter. A Resonant Harmonic Compensator (RHC)-based Proportional Resonant (PR) controller is employed in the current-controlled loop. The magnitude, phase, and frequency information of the grid voltage are provided by Second-Order General Integral (SOGI)-based PLL that has harmonic immunity, fast-tracking accuracy, and a rapid-dynamic response. MATLAB®/Simulink®/Simscape R2017b were used for the test bench implementation. Two scenarios were considered: in the first case, the input PV power feedforward loop was avoided, while in second case, it was included. The feedforward loop of input PV power improved the overall system dynamics. The results show that the designed controller improves both the steady-state and dynamic performance as compared with a proper-regulated PI-controller. The proposed controllers are insensitive to active and reactive power variations, and are robust, stable, faster, and fault tolerant, as compared to controllers from prior studies.

Funder

This Research was Supported by BK21PLUS

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3