Adaptive Driving Cycles of EVs for Reducing Energy Consumption

Author:

Komorska IwonaORCID,Puchalski AndrzejORCID,Niewczas AndrzejORCID,Ślęzak MarcinORCID,Szczepański Tomasz

Abstract

A driving cycle is a time series of a vehicle’s speed, reflecting its movement in real road conditions. In addition to certification and comparative research, driving cycles are used in the virtual design of drive systems and embedded control algorithms, traffic management and intelligent road transport (traffic engineering). This study aimed to develop an adaptive driving cycle for a known route to optimize the energy consumption of an electric vehicle and improve the driving range. A novel distance-based adaptive driving cycle method was developed. The proposed algorithm uses the segmentation and iterative synthesis procedures of Markov chains. Energy consumption during driving is monitored on an ongoing basis using Gaussian process regression, and speed and acceleration are corrected adaptively to maintain the planned energy consumption. This paper presents the results of studies of simulated driving cycles and the performance of the algorithm when applied to the real recorded driving cycles of an electric vehicle.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy consumption analysis of metropolitan logistics vehicles based on an ensemble K-means long short-term memory model;Energy & Environment;2024-05-05

2. Analyzing E-Bike Driving Conditions on Indian Roads Using Two Different Drive Cycles;Electric Power Components and Systems;2023-12-11

3. Metastable Conditions in a Three-Wheeled Bicycle with Variable Front Wheel Spacing;Transport and Telecommunication Journal;2023-06-01

4. Analyzing the Fuel Economy of Hybrid Electric Vehicle for Different Road and Traffic Conditions;2023 10th International Conference on Signal Processing and Integrated Networks (SPIN);2023-03-23

5. Representative Driving Cycles for Trinidad and Tobago with Slope Profiles for Electric Vehicles;Transportation Research Record: Journal of the Transportation Research Board;2022-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3