Hybrid Cascade Heat Pump and Thermal-Electric Energy Storage System for Residential Buildings: Experimental Testing and Performance Analysis

Author:

Palomba ValeriaORCID,Bonanno AntoninoORCID,Brunaccini Giovanni,Aloisio Davide,Sergi Francesco,Dino Giuseppe E.ORCID,Varvaggiannis Efstratios,Karellas Sotirios,Nitsch Birgo,Strehlow Andreas,Groβe André,Herrmann Ralph,Barmparitsas Nikolaos,Koch Nelson,Vérez David,Cabeza Luisa F.ORCID,Zsembinszki GabrielORCID,Frazzica AndreaORCID

Abstract

The need for innovative heating and cooling systems to decarbonize the building sector is widely recognized. It is especially important to increase the share of renewables at building level by maximizing self-consumption and reducing the primary energy demand. Accordingly, in the present paper, the results on a wide experimental campaign on a hybrid system are discussed. The system included a sorption module working as the topping cycle in a cascade configuration with a DC-driven vapor compression heat pump. A three-fluids heat exchanger with a phase change material (PCM), i.e., RT4 with nominal melting temperature of 4 °C, was installed on the evaporator side of the heat pump, for simultaneous operation as thermal storage and heat pumping purposes. The heat pump was connected to a DC-bus that included PV connection and electricity storage (batteries). Results showed that the energy efficiency of the heat pump in cascade operation was double compared to compression-only configuration and that, when simultaneously charging and discharging the latent storage in cascade configuration, no penalization in terms of efficiency compared to the compression-only configuration was measured. The self-sufficiency of the system was evaluated for three reference weeks in summer conditions of Athens climate and it was found that up to 100% of the electricity needed to drive the system could be self-produced for a modest cooling demand and up to 67% for the warmer conditions with high cooling demand.

Funder

Horizon 2020 Framework Programme

Ministerio de Ciencia, Innovación y Universidades de España

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3