Short-Term Load Forecasting Using Encoder-Decoder WaveNet: Application to the French Grid

Author:

Dorado Rueda Fernando,Durán Suárez Jaime,del Real Torres Alejandro

Abstract

The prediction of time series data applied to the energy sector (prediction of renewable energy production, forecasting prosumers’ consumption/generation, forecast of country-level consumption, etc.) has numerous useful applications. Nevertheless, the complexity and non-linear behaviour associated with such kind of energy systems hinder the development of accurate algorithms. In such a context, this paper investigates the use of a state-of-art deep learning architecture in order to perform precise load demand forecasting 24-h-ahead in the whole country of France using RTE data. To this end, the authors propose an encoder-decoder architecture inspired by WaveNet, a deep generative model initially designed by Google DeepMind for raw audio waveforms. WaveNet uses dilated causal convolutions and skip-connection to utilise long-term information. This kind of novel ML architecture presents different advantages regarding other statistical algorithms. On the one hand, the proposed deep learning model’s training process can be parallelized in GPUs, which is an advantage in terms of training times compared to recurrent networks. On the other hand, the model prevents degradations problems (explosions and vanishing gradients) due to the residual connections. In addition, this model can learn from an input sequence to produce a forecast sequence in a one-shot manner. For comparison purposes, a comparative analysis between the most performing state-of-art deep learning models and traditional statistical approaches is presented: Autoregressive-Integrated Moving Average (ARIMA), Long-Short-Term-Memory, Gated-Recurrent-Unit (GRU), Multi-Layer Perceptron (MLP), causal 1D-Convolutional Neural Networks (1D-CNN) and ConvLSTM (Encoder-Decoder). The values of the evaluation indicators reveal that WaveNet exhibits superior performance in both forecasting accuracy and robustness.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3