Abstract
Laboratory-synthesized specimens are employed for an experimental study on the mechanical properties of hydrate-bearing sediments (HBS) due to the difficulty of field coring. A representative synthesized sample for the analysis of the mechanical properties of HBS in the experimental study requires evenly distributed hydrates in the pores of the sample. However, a specimen made with an improper sand–water mixing method might have an uneven water distribution, resulting in an uneven hydrate distribution when applying the ice-seeding method for hydrate formation. This study adopted three kinds of methods to mix sand and water before forming hydrates and applied the low-field nuclear magnetic resonance (NMR) technique to investigate how these methods affect the hydrate distribution, further affecting the mechanical properties. To analyze the mechanical properties of HBS, we conducted drained triaxial tests. As shown in low-field NMR, when we compacted a sample of the sand–water mixture and froze it upside-down before hydrate formation, a sample with an even water distribution was obtained. Subsequently, the hydrate in HBS distributed also evenly. The stress-strain curves present different strain softening and hardening patterns due to the different hydrate distributions. Moreover, the samples with the evenly distributed hydrates have higher initial elastic modulus and strength than the ones made with other methods.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献