Combustion Modes and Unsteady Characteristics during the Condition Transition of a Scramjet Combustor

Author:

Jia Dongpeng,Pan Yu,Wang Ning,Liu Chaoyang,Yang Kai

Abstract

To investigate the combustion modes and unsteady characteristics during the condition transition of a scramjet combustor, a series of experiments were carried out under the condition of Mach 2.52 supersonic incoming flow, the corresponding stagnation pressure and temperature of which were 1.6 MPa and 1486 K, respectively. A fuel supply system that could dynamically adjust the injection pressure was adopted to simulate the condition transition stage of a scramjet. Based on the advanced combustion diagnosis technique, the transient chemiluminescence image and the wall pressure were recorded during the whole combustion process. Three typical modes of turbulent combustion occurred when the injection pressure drop gradually increased. The jet flame was stable after the condition transition when the injection pressure drop was relatively low. An unstable combustion phenomenon accompanied by intermittent local extinction and reignition could be found near the blowout limits. With a further increase in the injection pressure drop, the flame was blown out quickly during the transition process. In addition, the flame development characteristics during condition transition under stable combustion mode and the effect of injection pressure drop were studied in detail. During the process of switching between the two conditions, the area and light intensity of the flame decreased over time, and the wall pressure was accordingly reduced. As the increase in injection pressure dropped, the intensity of chemical reactions deceased obviously and the transition time became longer.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3