A CFD-Based Comparison of Different Positive Displacement Pumps for Application in Future Automatic Transmission Systems

Author:

Lobsinger ThomasORCID,Hieronymus TimmORCID,Schwarze Hubert,Brenner GuntherORCID

Abstract

The efficiency requirements for hydraulic pumps applied in automatic transmissions in future generations of automobiles will increase continuously. In addition, the pumps must be able to cope with multiphase flows to a certain extent. Given this background, a balanced vane pump (BVP), an internal gear pump (IGP) and a three-dimensional geared tumbling multi chamber (TMC) pump are analyzed and compared by a computational fluid dynamics (CFD) approach with ANSYS CFX and TwinMesh. Furthermore, test bench measurements are conducted to obtain experimental data to validate the numerical results. The obtained numerical results show a reasonable agreement with the experimental data. In the first CFD setup, the conveying characteristics of the pumps with pure oil regarding volumetric efficiencies, cavitation onset and pressure ripple are compared. Both the IGP and the BVP show high volumetric efficiencies and low pressure ripples whereas the TMC shows a weaker performance regarding these objectives. In the second CFD setup, an oil-bubbly air multiphase flow with different inlet volume fractions (IGVF) is investigated. It can be shown that free air changes the pumping characteristics significantly by increasing pressure and mass flow ripple and diminishing the volumetric efficiency as well as the required driving torque. The compression ratios of the pumps appear to be an important parameter that determines how the multiphase flow is handled regarding pressure and mass flow ripple. Overall, the BVP and the IGP show both a similar strong performance with and without free air. In the current development state, the TMC pump shows an inferior performance because of its lower compression ratio and therefore needs further optimization.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference27 articles.

1. Progress in Automotive Transmission Technology

2. Automotive Transmissions: Fundamentals, Selection, Design, and Application;Naunheimer,2011

3. eAxle development and optimization regarding NVH, efficiency and power density;Höfer,2020

4. Seamless-Shift Two-Speed eAxle with Torque Vectoring;Güth;VDI-Ber.,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3