A Multi-Frequency Electrical Impedance Spectroscopy Technique of Artificial Neural Network-Based for the Static State of Charge

Author:

Luo Yi-FengORCID

Abstract

An artificial neural network (ANN) based multi-frequency electrical impedance spectroscopy (EIS) technique is proposed to estimate the static state of charge (SOC) of lithium-ion (Li-ion) battery in this paper. The proposed ANN-based multi-frequency EIS technique firstly collects the data of AC independence and their corresponding static SOC. With battery discharging current and multi-frequency EIS results, an ANN model is built and trained to estimate SOC. The measurement data is obtained using the potentiostats/galvanostats device, and the ANN is trained using the neural network toolbox in MATLAB. According to the experimental results, the performance of the proposed ANN model is dependent on the number of neurons in the hidden layer. The proposed method is validated with a set of random discharging processes. The high accuracy of SOC estimation is able to be achieved with the average error reduced to 1.92% when the number of neurons in the hidden layer is 35. Therefore, the proposed ANN-based multi-frequency EIS technique can be utilized to measure the static SOC of random discharge of Li-ion batteries.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3