Abstract
An artificial neural network (ANN) based multi-frequency electrical impedance spectroscopy (EIS) technique is proposed to estimate the static state of charge (SOC) of lithium-ion (Li-ion) battery in this paper. The proposed ANN-based multi-frequency EIS technique firstly collects the data of AC independence and their corresponding static SOC. With battery discharging current and multi-frequency EIS results, an ANN model is built and trained to estimate SOC. The measurement data is obtained using the potentiostats/galvanostats device, and the ANN is trained using the neural network toolbox in MATLAB. According to the experimental results, the performance of the proposed ANN model is dependent on the number of neurons in the hidden layer. The proposed method is validated with a set of random discharging processes. The high accuracy of SOC estimation is able to be achieved with the average error reduced to 1.92% when the number of neurons in the hidden layer is 35. Therefore, the proposed ANN-based multi-frequency EIS technique can be utilized to measure the static SOC of random discharge of Li-ion batteries.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献