Abstract
In recent years, facial expression analysis and recognition (FER) have emerged as an active research topic with applications in several different areas, including the human-computer interaction domain. Solutions based on 2D models are not entirely satisfactory for real-world applications, as they present some problems of pose variations and illumination related to the nature of the data. Thanks to technological development, 3D facial data, both still images and video sequences, have become increasingly used to improve the accuracy of FER systems. Despite the advance in 3D algorithms, these solutions still have some drawbacks that make pure three-dimensional techniques convenient only for a set of specific applications; a viable solution to overcome such limitations is adopting a multimodal 2D+3D analysis. In this paper, we analyze the limits and strengths of traditional and deep-learning FER techniques, intending to provide the research community an overview of the results obtained looking to the next future. Furthermore, we describe in detail the most used databases to address the problem of facial expressions and emotions, highlighting the results obtained by the various authors. The different techniques used are compared, and some conclusions are drawn concerning the best recognition rates achieved.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献