Automatic Object-Detection of School Building Elements in Visual Data: A Gray-Level Histogram Statistical Feature-Based Method

Author:

Zhang ZhenyuORCID,Wei Hsi-Hsien,Yum Sang GukORCID,Chen Jieh-Haur

Abstract

Automatic object-detection technique can improve the efficiency of building data collection for semi-empirical methods to assess the seismic vulnerability of buildings at a regional scale. However, current structural element detection methods rely on color, texture and/or shape information of the object to be detected and are less flexible and reliable to detect columns or walls with unknown surface materials or deformed shapes in images. To overcome these limitations, this paper presents an innovative gray-level histogram (GLH) statistical feature-based object-detection method for automatically identifying structural elements, including columns and walls, in an image. This method starts with converting an RGB image (i.e. the image colors being a mix of red, green and blue light) into a grayscale image, followed by detecting vertical boundary lines using the Prewitt operator and the Hough transform. The detected lines divide the image into several sub-regions. Then, three GLH statistical parameters (variance, skewness, and kurtosis) of each sub-region are calculated. Finally, a column or a wall in a sub-region is recognized if these features of the sub-region satisfy the predefined criteria. This method was validated by testing the detection precision and recall for column and wall images. The results indicated the high accuracy of the proposed method in detecting structural elements with various surface treatments or deflected shapes. The proposed structural element detection method can be extended to detecting more structural characteristics and retrieving structural deficiencies from digital images in the future, promoting the automation in building data collection.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3