A Comparative Study of Regression Model and the Adaptive Neuro-Fuzzy Conjecture Systems for Predicting Energy Consumption for Jaw Crusher

Author:

Abuhasel Khaled AliORCID

Abstract

Crushing is a vital process for different industrial applications where a significant portion of power is consumed to properly blast rocks into a predefined size of fragmented rock. An accurate prediction of the energy needed to control this process rarely exists in the literature, hence there have been limited efforts to optimize the power consumption at the crushing stage by a jaw crusher; which is the most widely used type of crusher. The existence of accurate power prediction as well as optimizing the steps for primary crushing will offer vital tools in selecting a suitable crusher for a specific application. In this work, the specific power consumption of a jaw crusher is predicted with the help of the adaptive neuro-fuzzy interference system (ANFIS). The investigation included, aside from the power required for rock comminution, an optimization of the crushing process to reduce this estimated power. Results revealed the success of the model to accurately predict comminution power with an accuracy of more than 96% in comparison with the corresponding real data. The obtained results introduce good knowledge that may be used in future academic and industrial research.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Materials: Engineering, Science, Processing and Design;Ashby,2018

2. Modeling and Simulation of Mineral Processing Systems;King,2012

3. Laboratory Assessment of the Role of Particle Size Distribution on the Deformation and Degradation of Ballast under Cyclic Loading

4. Concrete aggregates properties crushed by jaw and impact secondary crushing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3