Dehydration, Rehydration and Thermal Treatment: Effect on Bioactive Compounds of Red Seaweeds Porphyra umbilicalis and Porphyra linearis

Author:

Pires Carla12ORCID,Sapatinha Maria1,Mendes Rogério12ORCID,Bandarra Narcisa M.12,Gonçalves Amparo12ORCID

Affiliation:

1. Division of Aquaculture, Upgrading and Biospropecting (DivAV), Department for the Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA), Av. Dr. Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal

2. Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal

Abstract

The nutritional and bioactive value of seaweeds is widely recognized, making them a valuable food source. To use seaweeds as food, drying and thermal treatments are required, but these treatments may have a negative impact on valuable bioactive compounds. In this study, the effects of dehydration, rehydration, and thermal treatment on the bioactive compounds (carotenoids, phycobiliproteins, total phenolic content (TPC), total flavonoids content (TFC)), antioxidant (ABTS and DPPH radical scavenging activities) and anti-Alzheimer’s (Acetylcholinesterase (AchE) inhibitory activities, and color properties of Porphyra umbilicalis and Porphyra linearis seaweeds were evaluated. The results revealed significant reductions in carotenoids, TPC, TFC, and antioxidant activities after the seaweeds’ processing, with differences observed between species. Thermal treatment led to the most pronounced reductions in bioactive compound contents and antioxidant activity. AchE inhibitory activity remained relatively high in all samples, with P. umbilicalis showing higher activity than P. linearis. Changes in color (ΔE) were significant after seaweeds’ dehydration, rehydration and thermal treatment, especially in P. umbilicalis. Overall, optimizing processing methods is crucial for preserving the bioactive compounds and biological activities of seaweeds, thus maximizing their potential as sustainable and nutritious food sources or as nutraceutical ingredients.

Funder

MAR2020

Publisher

MDPI AG

Reference34 articles.

1. Cai, J., Lovatelli, A., Aguilar-Manjarrez, J., Cornish, L., Dabbadie, L., Desrochers, A., Diffey, S., Garrido Gamarro, E., Geehan, J., and Hurtado, A. (2021). Seaweeds and Microalgae: An Overview for Unlocking Their Potential in Global Aquaculture Development, FAO. No. 1229.

2. Pomin, V.H. (2011). Seaweed: Ecology, Nutrient Composition and Medicinal Uses, Nova Science Publishers, Inc.. [1st ed.].

3. Kraan, S. (2013). Functional Ingredients from Algae for Foods and Nutraceuticals, Elsevier.

4. Extraction and purification of phycobiliproteins from algae and their applications;Kovaleski;Front. Chem.,2022

5. Eseberri, I., Trepiana, J., Léniz, A., Gómez-García, I., Carr-Ugarte, H., González, M., and Portillo, M.P. (2022). Variability in the Beneficial Effects of Phenolic Compounds: A Review. Nutrients, 14.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3