Transcriptomic Characterization of Cow, Donkey and Goat Milk Extracellular Vesicles Reveals Their Anti-Inflammatory and Immunomodulatory Potential

Author:

Mecocci SamantaORCID,Pietrucci DanieleORCID,Milanesi MarcoORCID,Pascucci LuisaORCID,Filippi SilviaORCID,Rosato Vittorio,Chillemi GiovanniORCID,Capomaccio StefanoORCID,Cappelli KatiaORCID

Abstract

Milk extracellular vesicles (mEVs) seem to be one of the main maternal messages delivery systems. Extracellular vesicles (EVs) are micro/nano-sized membrane-bound structures enclosing signaling molecules and thus acting as signal mediators between distant cells and/or tissues, exerting biological effects such as immune modulation and pro-regenerative activity. Milk is also a unique, scalable, and reliable source of EVs. Our aim was to characterize the RNA content of cow, donkey, and goat mEVs through transcriptomic analysis of mRNA and small RNA libraries. Over 10,000 transcripts and 2000 small RNAs were expressed in mEVs of each species. Among the most represented transcripts, 110 mRNAs were common between the species with cow acting as the most divergent. The most represented small RNA class was miRNA in all the species, with 10 shared miRNAs having high impact on the immune regulatory function. Functional analysis for the most abundant mRNAs shows epigenetic functions such as histone modification, telomere maintenance, and chromatin remodeling for cow; lipid catabolism, oxidative stress, and vitamin metabolism for donkey; and terms related to chemokine receptor interaction, leukocytes migration, and transcriptional regulation in response to stress for goat. For miRNA targets, shared terms emerged as the main functions for all the species: immunity modulation, protein synthesis, cellular cycle regulation, transmembrane exchanges, and ion channels. Moreover, donkey and goat showed additional terms related to epigenetic modification and DNA maintenance. Our results showed a potential mEVs immune regulatory purpose through their RNA cargo, although in vivo validation studies are necessary.

Funder

Dipartimento di Medicina Veterinaria, Università di Perugia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3