Abstract
With the limitation of autografts, the development of alternative treatments for bone diseases to alleviate autograft-related complications is highly demanded. In this study, a tissue-engineered bone was formed by culturing rat bone marrow cells (RBMCs) onto porous apatite-fiber scaffolds (AFSs) with three-dimensional (3D) interconnected pores using a radial-flow bioreactor (RFB). Using the optimized flow rate, the effect of different culturing periods on the development of tissue-engineered bone was investigated. The 3D cell culture using RFB was performed for 0, 1 or 2 weeks in a standard medium followed by 0, 1 or 2 weeks in a differentiation medium. Osteoblast differentiation in the tissue-engineered bone was examined by alkaline phosphatase (ALP) and osteocalcin (OC) assays. Furthermore, the tissue-engineered bone was histologically examined by hematoxylin and eosin and alizarin red S stains. We found that the ALP activity and OC content of calcified cells tended to increase with the culture period, and the differentiation of tissue-engineered bone could be controlled by varying the culture period. In addition, the employment of RFB and AFSs provided a favorable 3D environment for cell growth and differentiation. Overall, these results provide valuable insights into the design of tissue-engineered bone for clinical applications.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献