Reassessment of SST4 Somatostatin Receptor Expression Using SST4-eGFP Knockin Mice and the Novel Rabbit Monoclonal Anti-Human SST4 Antibody 7H49L61

Author:

Lupp AmelieORCID,Ehms Blanca,Stumm Ralf,Göckeritz Johannes,Mawrin Christian,Schulz StefanORCID

Abstract

Among the five somatostatin receptors (SST1–SST5), SST4 is the least characterized, which is in part due to the lack of specific monoclonal antibodies. We generated a knockin mouse model that expresses a carboxyl-terminal SST4-eGFP fusion protein. In addition, we extensively characterized the novel rabbit monoclonal anti-human SST4 antibody 7H49L61 using transfected cells and receptor-expressing tissues. 7H49L61 was then subjected to immunohistochemical staining of a series of formalin-fixed, paraffin-embedded normal and neoplastic human tissues. Characterization of SST4-eGFP mice revealed prominent SST4 expression in cortical pyramidal cells and trigeminal ganglion cells. In the human cortex, 7H49L61 disclosed a virtually identical staining pattern. Specificity of 7H49L61 was demonstrated by detection of a broad band migrating at 50–60 kDa in immunoblots. Tissue immunostaining was abolished by preadsorption of 7H49L61 with its immunizing peptide. In the subsequent immunohistochemical study, 7H49L61 yielded a predominant plasma membrane staining in adrenal cortex, exocrine pancreas, and placenta. SST4 was also found in glioblastomas, parathyroid adenomas, gastric and pancreatic adenocarcinomas, pheochromocytomas, and lymphomas. Altogether, we provide the first unequivocal localization of SST4 in normal and neoplastic human tissues. The monoclonal antibody 7H49L61 may also prove of great value for identifying SST4-expressing tumors during routine histopathological examinations.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3