Myelin Quantification in White Matter Pathology of Progressive Multiple Sclerosis Post-Mortem Brain Samples: A New Approach for Quantifying Remyelination

Author:

Huitema Marije J. D.ORCID,Strijbis Eva M. M.,Luchicchi Antonio,Bol John G. J. M.,Plemel Jason R.,Geurts Jeroen J. G.,Schenk Geert J.ORCID

Abstract

Multiple sclerosis (MS) is a demyelinating and neurodegenerative disease of the central nervous system (CNS). Repair through remyelination can be extensive, but quantification of remyelination remains challenging. To date, no method for standardized digital quantification of remyelination of MS lesions exists. This methodological study aims to present and validate a novel standardized method for myelin quantification in progressive MS brains to study myelin content more precisely. Fifty-five MS lesions in 32 tissue blocks from 14 progressive MS cases and five tissue blocks from 5 non-neurological controls were sampled. MS lesions were selected by macroscopic investigation of WM by standard histopathological methods. Tissue sections were stained for myelin with luxol fast blue (LFB) and histological assessment of de- or remyelination was performed by light microscopy. The myelin quantity was estimated with a novel myelin quantification method (MQM) in ImageJ. Three independent raters applied the MQM and the inter-rater reliability was calculated. We extended the method to diffusely appearing white matter (DAWM) and encephalitis to test potential wider applicability of the method. Inter-rater agreement was excellent (ICC = 0.96) and there was a high reliability with a lower- and upper limit of agreement up to −5.93% to 18.43% variation in myelin quantity. This study builds on the established concepts of histopathological semi-quantitative assessment of myelin and adds a novel, reliable and accurate quantitative measurement tool for the assessment of myelination in human post-mortem samples.

Funder

Canadian Institutes of Health Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3