Ultrastructural Study of Platelet Behavior and Interrelationship in Sprouting and Intussusceptive Angiogenesis during Arterial Intimal Thickening Formation

Author:

Díaz-Flores LucioORCID,Gutiérrez Ricardo,García Maria Pino,González-Gómez Miriam,Díaz-Flores Lucio,Gayoso Sara,Carrasco Jose LuisORCID,Álvarez-Argüelles Hugo

Abstract

Platelets in atherosclerosis, bypass stenosis, and restenosis have been extensively assessed. However, a sequential ultrastructural study of platelets in angiogenesis during the early phases of these lesions has received less attention. Our objective was the study of platelets in angiogenesis and vessel regression during intimal thickening (IT) formation, a precursor process of these occlusive vascular diseases. For this purpose, we used an experimental model of rat occluded arteries and procedures for ultrastructural observation. The results show (a) the absence of platelet adhesion in the de-endothelialized occluded arterial segment isolated from the circulation, (b) that intraarterial myriad platelets contributed from neovessels originated by sprouting angiogenesis from the periarterial microvasculature, (c) the association of platelets with blood components (fibrin, neutrophils, macrophages, and eosinophils) and non-polarized endothelial cells (ECs) forming aggregates (spheroids) in the arterial lumen, (d) the establishment of peg-and-socket junctions between platelets and polarized Ecs during intussusceptive angiogenesis originated from the EC aggregates, with the initial formation of IT, and (e) the aggregation of platelets in regressing neovessels (‘transitory paracrine organoid’) and IT increases. In conclusion, in sprouting and intussusceptive angiogenesis and vessel regression during IT formation, we contribute sequential ultrastructural findings on platelet behavior and relationships, which can be the basis for further studies using other procedures.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3