Lignin and Xylan as Interface Engineering Additives for Improved Environmental Durability of Sustainable Cellulose Nanopapers

Author:

Beluns SergejsORCID,Platnieks Oskars,Gaidukovs Sergejs,Starkova OlesjaORCID,Sabalina Alisa,Grase Liga,Thakur Vijay KumarORCID,Gaidukova Gerda

Abstract

Cellulose materials and products are frequently affected by environmental factors such as light, temperature, and humidity. Simulated UV irradiation, heat, and moisture exposure were comprehensively used to characterize changes in cellulose nanopaper (NP) tensile properties. For the preparation of NP, high-purity cellulose from old, unused filter paper waste was used. Lignin and xylan were used as sustainable green interface engineering modifiers for NP due to their structural compatibility, low price, nontoxic nature, and abundance as a by-product of biomass processing, as well as their ability to protect cellulose fibers from UV irradiation. Nanofibrillated cellulose (NFC) suspension was obtained by microfluidizing cellulose suspension, and NP was produced by casting films from water suspensions. The use of filler from 1 to 30 wt% significantly altered NP properties. All nanopapers were tested for their sensitivity to water humidity, which reduced mechanical properties from 10 to 40% depending on the saturation level. Xylan addition showed a significant increase in the specific elastic modulus and specific strength by 1.4- and 2.8-fold, respectively. Xylan-containing NPs had remarkable resistance to UV irradiation, retaining 50 to 90% of their initial properties. Lignin-modified NPs resulted in a decreased mechanical performance due to the particle structure of the filler and the agglomeration process, but it was compensated by good property retention and enhanced elongation. The UV oxidation process of the NP interface was studied with UV-Vis and FTIR spectroscopy, which showed that the degradation of lignin and xylan preserves a cellulose fiber structure. Scanning electron microscopy images revealed the structural formation of the interface and supplemented understanding of UV aging impact on the surface and penetration depth in the cross-section. The ability to overcome premature aging in environmental factors can significantly benefit the wide adaption of NP in food packaging and functional applications.

Funder

Latvian Council of Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3