Abstract
Neuropathic pain arises from damage or dysfunction of the peripheral or central nervous system and manifests itself in a wide variety of sensory symptoms and cognitive disorders. Many studies demonstrate the role of neuropathic pain-induced neuroinflammation in behavioral disorders. For effective neuropathic pain treatment, an integrative approach is required, which simultaneously affects several links of pathogenesis. One promising candidate for this role is synaptamide (N-docosahexaenoylethanolamine), which is an endogenous metabolite of docosahexaenoic acid. In this study, we investigated the activity of synaptamide on mice behavior and hippocampal plasticity in neuropathic pain induced by spared nerve injury (SNI). We found a beneficial effect of synaptamide on the thermal allodynia and mechanical hyperalgesia dynamics. Synaptamide prevented working and long-term memory impairment. These results are probably based on the supportive effect of synaptamide on SNI-impaired hippocampal plasticity. Nerve ligation caused microglia activation predominantly in the contralateral hippocampus, while synaptamide inhibited this effect. The treatment reversed dendritic tree degeneration, dendritic spines density reduction on CA1-pyramidal neurons, neurogenesis deterioration, and hippocampal long-term potentiation (LTP) impairment. In addition, synaptamide inhibits changes in the glutamatergic receptor expression. Thus, synaptamide has a beneficial effect on hippocampal functioning, including synaptic plasticity and hippocampus-dependent cognitive processes in neuropathic pain.
Funder
Russian Science Foundation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献