Novel Pituitary Actions of TAC4 Gene Products in Teleost

Author:

Shi Xuetao,Ye Cheng,Qin Xiangfeng,Zhou Lingling,Xia Chuanhui,Cai Tianyi,Xie Yunyi,Yin Zhan,Hu GuangfuORCID

Abstract

Tachykinin 4 (TAC4) is the latest member of the tachykinin family involved in several physiological functions in mammals. However, little information is available about TAC4 in teleost. In the present study, we firstly isolated TAC4 and six neurokinin receptors (NKRs) from grass carp brain and pituitary. Sequence analysis showed that grass carp TAC4 could encode two mature peptides (namely hemokinin 1 (HK1) and hemokinin 2 (HK2)), in which HK2 retained the typical FXGLM motif in C-terminal of tachyinin, while HK1 contained a mutant VFGLM motif. The ligand-receptor selectivity showed that HK2 could activate all 6 NKRs but with the highest activity for the neurokinin receptor 2 (NK2R). Interestingly, HK1 displayed a very weak activation for each NKR isoform. In grass carp pituitary cells, HK2 could induce prolactin (PRL), somatolactin α (SLα), urotensin 1 (UTS1), neuromedin-B 1 (NMB1), cocaine- and amphetamine-regulated transcript 2 (CART2) mRNA expression mediated by NK2R and neurokinin receptor 3 (NK3R) via activation cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), phospholipase C (PLC)/inositol 1,4,5-triphosphate (IP3)/protein kinase C (PKC) and calcium2+ (Ca2+)/calmodulin (CaM)/calmodulin kinase-II (CaMK II) cascades. However, the corresponding stimulatory effects triggered by HK1 were found to be notably weaker. Furthermore, based on the structural base for HK1, our data suggested that a phenylalanine (F) to valine (V) substitution in the signature motif of HK1 might have contributed to its weak agonistic actions on NKRs and pituitary genes regulation.

Funder

Fundamental Research Funds for the Central Universities

National Key R&D Program of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3