Interaction Profiles of Central Nervous System Active Drugs at Human Organic Cation Transporters 1–3 and Human Plasma Membrane Monoamine Transporter

Author:

Angenoorth Thomas J. F.ORCID,Stankovic Stevan,Niello MarcoORCID,Holy Marion,Brandt Simon D.ORCID,Sitte Harald H.ORCID,Maier JulianORCID

Abstract

Many psychoactive compounds have been shown to primarily interact with high-affinity and low-capacity solute carrier 6 (SLC6) monoamine transporters for norepinephrine (NET; norepinephrine transporter), dopamine (DAT; dopamine transporter) and serotonin (SERT; serotonin transporter). Previous studies indicate an overlap between the inhibitory capacities of substances at SLC6 and SLC22 human organic cation transporters (SLC22A1–3; hOCT1–3) and the human plasma membrane monoamine transporter (SLC29A4; hPMAT), which can be classified as high-capacity, low-affinity monoamine transporters. However, interactions between central nervous system active substances, the OCTs, and the functionally-related PMAT have largely been understudied. Herein, we report data from 17 psychoactive substances interacting with the SLC6 monoamine transporters, concerning their potential to interact with the human OCT isoforms and hPMAT by utilizing radiotracer-based in vitro uptake inhibition assays at stably expressing human embryonic kidney 293 cells (HEK293) cells. Many compounds inhibit substrate uptake by hOCT1 and hOCT2 in the low micromolar range, whereas only a few substances interact with hOCT3 and hPMAT. Interestingly, methylphenidate and ketamine selectively interact with hOCT1 or hOCT2, respectively. Additionally, 3,4-methylenedioxymethamphetamine (MDMA) is a potent inhibitor of hOCT1 and 2 and hPMAT. Enantiospecific differences of R- and S-α-pyrrolidinovalerophenone (R- and S-α-PVP) and R- and S-citalopram and the effects of aromatic substituents are explored. Our results highlight the significance of investigating drug interactions with hOCTs and hPMAT, due to their role in regulating monoamine concentrations and xenobiotic clearance.

Funder

Vienna Science and Technology Fund

FWF Austrian Science Fund

Theodor Körner Fonds

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3