Pipeline Network Options of CCUS in Coal Chemical Industry

Author:

Xie Jingjing,Li Xiaoyu,Gao Xu

Abstract

The modern coal chemical industry is a typical high carbon emission industry, which has formed a large-scale development in China. In the context of carbon neutrality, it is considered to be an ideal combination mode that captures high-concentration CO2 emitted by the modern coal chemical plants and transports it to oilfields through pipelines, which can both realize the low-carbon development goals of the modern coal chemical industry and reduce the cost of the whole process of Carbon Capture and Storage (CCS), as well as promote the development of CCS in China. Based on the data from modern coal chemical projects and depleted oil basins across China, a model of a pipeline network with optimal layout design was constructed, aiming to achieve specific emission reduction targets. Meanwhile, its economic effects will be analyzed. It turns out that this layout can help achieve an annual emission reduction of 280 million tons of CO2, with an average annual net income of USD 2.20 billion, and a unit net income of USD 7.85 per ton of CO2. A total of 166 pipelines up to 15,783 km in total length need to be built across China. Suitable storage sites can be found within an average radius of 94 km for emission sources. A total of 11,115 km of pipelines needs to be built in the “Three North” areas, accounting for 70.4% of the total pipeline length.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference22 articles.

1. National Academies of Sciences Engineering; Medicine. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda, 2019.

2. Comprehensive Report on “China’s Long-term Low-Carbon Development Strategy and Transformation Path Research”;Xie;China Popul. Resour. Environ.,2020

3. Water-CCUS nexus: Challenges and opportunities of China’s coal chemical industry;Li;Clean Technol. Environ. Policy,2016

4. The engineering practice of CO2 capture, utilization and storage(CCUS) in coal chemical industry of Yanchang Petroleum;Wang;Unconv. Oil Gas,2021

5. Economic evaluation of carbon capture and storage enhanced oil recovery technology;Zhong;Mod. Chem. Ind.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3