Source Apportionment of PM2.5 in Daejeon Metropolitan Region during January and May to June 2021 in Korea Using a Hybrid Receptor Model

Author:

Han Sang-WooORCID,Joo Hung-Soo,Song Hui-Jun,Lee Su-Bin,Han Jin-Seok

Abstract

We tried to estimate anthropogenic emission sources, including the contributions of neighboring regions, that affect the fine particle concentration (PM2.5) in Daejeon using positive matrix factorization (PMF), concentration weight trajectory (CWT), and modified concentration weight trajectory (MCWT) models in a manner that might overcome the limitations of widely applied hybrid receptor models. Fractions of ion, carbonaceous compound and elements in PM2.5 were 58%, 17%, and 3.6% during January and 49%, 17%, and 14.9% during May to June, respectively. The fraction of ions was higher during winter season, while the fraction of elements was higher during the other season. From the PMF model, seven factors were determined, including dust/soil, sea salt, secondary nitrate/chloride, secondary sulfate, industry, coal combustion, and vehicle sources. Secondary sulfate showed the highest contribution followed by secondary nitrate/chloride and vehicle sources. The MCWT model significantly improved the performance of regional contributions of the CWT model, which had shown a high contribution from the Yellow Sea where there are no emission sources. According to the MCWT results, regional contributions to PM2.5 in the Daejeon metropolitan region were highest from eastern and southern China, followed by Russia, northeastern China, and Manchuria. We conclude that the MCWT model is more useful than the CWT model to estimate the regional influence of the PM2.5 concentrations. This approach can be used as a reference tool for studies to further improve on the limitations of hybrid receptor models.

Funder

Ministry of Science and ICT

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3