Cost–Benefit Analysis of Synergistic CO2 and NOx Energy-Efficient Technologies for the Road Transport Sector in China

Author:

Ping Liying,Wang Yuan,Lee Lien-Chieh,Peng Binbin,Ahmed Bushra Y.,Zhang Hongyu,Ma Wenchao

Abstract

The transportation sector is a major source of greenhouse gases and air pollutants, and it has a crucial effect on the synergistic reduction of NOx and carbon. In order to find the energy-efficient vehicle technologies with the highest net reduction potential and lowest net reduction cost over the life cycle, this study traced the CO2 and NOx emission streams of 33 energy-efficient technologies, hidden in the supply chain during the production phase, through structural path analysis, and measured the emission reductions during the use phase using the emission factor method. Moreover, we applied structural decomposition analysis to quantify the three main drivers, including emission intensity, industrial structure, and final demand, of changes in CO2 and NOx emissions from 11 transport subsectors during 2012–2018. Results indicate that CO2 emissions of the transport sector more than doubled from 2012 to 2018; however, the influence of NOx was less significant. The final demand of the road subsector was the most significant driver contributing to CO2 emission changes, with an increase of 109.27 Mt. The emission intensity of road transportation caused the greatest mitigation effect on NOx emission changes, with a decrease of 1902 Kt. The findings of the scenario analysis demonstrate that the most efficient action of the pure electric technology for passenger cars reduces 20.92 Mt NOx emissions, and the parallel hybrid technology for heavy trucks offers the greatest cost effectiveness with a net abatement of 2577 Mt CO2 over its life cycle. Consequently, the aggressive development of new energy technology has become a prerequisite strategy to synergistically reduce CO2 and NOx emissions.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference54 articles.

1. Drivers of improved PM2.5air quality in China from 2013 to 2017

2. World Energy Balance https://www.iea.org/reports/world-energy-balances-overview

3. The contribution of transport policies to the mitigation potential and cost of 2 °C and 1.5 °C goals

4. Efficiency Technology and Cost Assessment for US 2025–2030 Light-Duty Vehicles;Lutsey,2017

5. Heavy Duty Vehicles Technology Potential and Cost Study;Norris,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3