Spatial-Temporal Variations of Extreme Precipitation Characteristics and Its Correlation with El Niño-Southern Oscillation during 1960–2019 in Hubei Province, China

Author:

Wang Weizheng,Tang Huiya,Li Jinping,Hou Yukun

Abstract

Extreme precipitation could result in many disasters, such as floods, drought, and soil erosion, further bringing severe economic loss. Based on the daily precipitation records during 1960–2019 of 26 stations obtained from the National Meteorological Science Data Center of China, 10 extreme precipitation indices (EPIs: annual total precipitation (PRCPTOT), max-1-day precipitation amount (RX1day), max-5-day precipitation amount (RX5day), number of heavy rain days (R10), number of very heavy rain days (R10), simple daily intensity index (SDII), consecutive dry days (CDD), continued wet days (CWD), very wet days (R95p) and extremely wet days (R99p)) were chosen and used to analyze the spatial-temporal variation of extreme precipitation within Hubei province, China, which is an important industrial and agricultural base in China. Finally, the correlation between El Niño-Southern Oscillation and EPIs was analyzed by cross-wavelet analysis. Results showed that the annual EPIs varied obviously during 1960–2019, and CWD decreased significantly (p < 0.05). The chosen EPIs were higher in eastern and southwestern Hubei compared to other regions, and RX1day, RX5day, R95p, and R99p were increased in most regions. The spatial-temporal variations of spring and summer EPIs were more obvious than those on an annual scale. In summer, all EPIs except CDD should increase in the near future. More attention should be paid to Wuhan, Enshi, and Macheng, where the RX1day, RX5day, R95p, and R99p will increase in these regions. Finally, the RX1day and R10 were positively correlated with MEI (p < 0.05), while the RX5day, CDD, CWD, and R99p were negatively correlated with MEI (p < 0.05). The extreme precipitation events within Hubei were affected by the El Niño-Southern Oscillation. The results could provide a possible driving factor for precipitation prediction and natural hazard prevention within Hubei province, China.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference62 articles.

1. Effect of sub-cloud evaporation on precipitation in the Tianshan Mountains (Central Asia) under the influence of global warming;Hydrol. Process.,2020

2. Global and regional increase of precipitation extremes under global warming;Water Resour. Res.,2019

3. Precipitation extremes under climate change;Curr. Clim. Chang. Rep.,2015

4. Indirect Effects of Binary Typhoons on an Extreme Rainfall Event in Henan Province, China from 19 to 21 July 2021: 2. Numerical Study;J. Geophys. Res.-Atmos.,2022

5. Evaluating the cost of flood damage based on changes in extreme rainfall in Japan;Sustain. Sci.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3