Characteristics of Ozone Pollution and the Impacts of Related Meteorological Factors in Shanxi Province, China

Author:

Chen LingORCID,Xiao Hui,Zhu Lingyun,Guo Xue,Wang Wenya,Ma Li,Guo Wei,He Jieying,Wang Yan,Li Mingming,Chen Erping,Lan Jie,Nan Ruixian

Abstract

Based on environmental monitoring data and meteorological observation data of the Chinese major energy province, Shanxi, from 2015 to 2020, using the satellite remote sensing data of Atmospheric Infrared Sounder Instrument (AIRS) and Ozone Monitoring Instrument (OMI) in 2017, we analyzed the characteristics of surface ozone (O3) pollution and its correlation with meteorological factors, as well as the vertical distribution of O3 in typical pollution cities in Shanxi Province. The results showed that surface O3 became the primary pollutant in Shanxi. Surface O3 has shown a zonal distribution with a high level in the south and a low level in the north region since 2017. Surface O3 pollution was severe in 2019, and the maximum daily 8 h running average of O3 (MDA8 O3) decreased, but annual mean O3 in northern and central regions showed a slow rising trend in 2020. Comprehensive analyses of the influence of meteorological factors on surface O3 indicated that O3 pollution in Linfen, Yuncheng and Taiyuan was mainly caused by local photochemical reactions, while that in Jincheng, Xinzhou, Lvliang and Yangquan resulted from regional transports. O3 volume mixing ratios (VMR) in the middle and lower troposphere generally increased with altitude, peaking at 120 ppbv at approximately 400 hPa. The positive vertical gradient of O3 in the boundary layer was obvious in Taiyuan in summer and significant in the surface layer in Taiyuan and Linfen during winter and spring, which was associated with greater atmospheric dynamic stability and suppressed vertical mixing. Due to the lack of direct detection of O3 in the lower troposphere in this region, O3 vertical distribution retrieved by satellite observation is critical for the study of vertical mixing and transport of local O3, as well as its regional transport characteristics.

Funder

National Key Basic Research Development Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference72 articles.

1. Development of study on ozone variation and its climatic effect;Wang;Adv. Earth Sci.,1999

2. Advances in atmospheric ozone chemistry;Jia;Prog. Chem.,2006

3. A Study of Ozone Amount in the Transition Layer Between Troposphere and Stratosphere and Its Heating Rate

4. Possible causes of total ozone depletion over the Qinghai-Xizang Plateau and its relation to tropopause height in recent 30 years;Zhou;Plateau Meteorol.,2012

5. Stratospheric temperature trends: Observations and model simulations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3