Atmospheric CO2 Concentrations in Caves Protected as Nature Reserves and Related Gas Hazard

Author:

Madonia PaoloORCID,Cangemi Marianna,Casamento Giulia,Di Maggio CiprianoORCID,Di Pietro Rosario,Interlandi Marco,Barraco Gianfranco,D’Aleo RobertoORCID,Di Trapani Francesco

Abstract

Atmospheric CO2 concentrations can reach high levels inside natural caves, representing a hazardous condition for both humans frequenting the underground environment and its safeguard due to the corrosion of speleothems induced by the acidification of atmospheric moisture. These issues are particularly critical for the eco-sustainable management of caves protected as nature reserves and undergoing touristic exploitation. In this paper we present the results of the C6 project, which was activated in 1999 for the monitoring of air quality inside three caves protected as nature reserves in Sicily (Italy). Near-real-time and spot measurements of air temperature and CO2 concentration have been carried out since the year 2000, giving the opportunity of evaluating the gas hazard for visitors and its potential impact on the protected underground environments, as well as the influence of meteorological and hydrological conditions in driving carbon dioxide accumulations. The analysis of data acquired in the hypogeal atmosphere, and their comparison with analogous epigeal measures, indicates that carbon dioxide accumulation is controlled by a complex interaction among cave topography, meteorological dynamics, gaseous exchanges between groundwaters and the atmosphere, and human fruition. This last factor, under particular conditions, can surprisingly diminishing underground CO2 concentrations.

Funder

Regione Siciliana, Assessorato del Territorio e dell’Ambiente

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference37 articles.

1. Environmental Protection Agency

2. Global Monitoring Laboratory

3. EH40/2005. Workplace Exposure Limits

4. L’Anidride Carbonica. Aspetti di Sicurezza

5. Human Health Risk Assessment of CO2: Survivors of Acute High-Level Exposure and Populations Sensitive to Prolonged Low-Level Exposure

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3