A Review on Lignin-Based Carbon Fibres for Carbon Footprint Reduction

Author:

Obasa Victoria DumebiORCID,Olanrewaju Oludolapo AkanniORCID,Gbenebor Oluwashina Phillips,Ochulor Ezenwanyi FideliaORCID,Odili Cletus Chiosa,Abiodun Yetunde OyebolajiORCID,Adeosun Samson Oluropo

Abstract

Carbon fibers (CFs) are made mostly from a non-environmentally friendly polyacrylonitrile (PAN) and little from rayon. PAN-based CFs, require huge amount of energy for its production aside its contributions to the global CO2 emission. Therefore, there is recourse to a more environmentally friendly sources of CFs biomass. Recently lignin has been recognized as a potential renewable raw material for carbon fibers to replace PAN-based. The magnitude and quality of CO2 emission of lignin-based CFs are dependent on the processing route. On this premise; this review examines the various lignin-based CFs processing route adopted by researcher in the recent past to establish the most viable route with minimum carbon footprint emission. Outcome of the review shows that the major advantages of aromatic polymer (AP) generated precursor over PAN is the presence of higher quantity of guaiacyl units and oxygen content which makes the stabilization phase efficient and faster requiring less energy. Though there are several methods and options for the various stages of conversion of lignocellulosic biomass into CFs as highlighted in the study, establishing an optimum processing route will be a trade-off amongst various issues of concern; carcinogenic risk, carbon footprint emission, CFs Yield and mechanical strength of the CFs. Inferences from the study shows that the L-CF significantly produced reduced climatic impact in terms of CO2 emission.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference106 articles.

1. An Assessment of Material Production Data for Magnesium and Carbon Fiber;Johnson,2014

2. Environmental Aspects of Use of Recycled Carbon Fiber Composites in Automotive Applications

3. Lignin Valorization: Improving Lignin Processing in the Biorefinery

4. Environmental Evaluation of Lightweight Exterior Body Panels in New Generation Vehicles;Overly,2002

5. Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3