Production Potential of Greenhouse Gases Affected by Microplastics at Freshwater and Saltwater Ecosystems

Author:

Li Xiaoyu,Zhang Lirong,Zhou Lifeng,Liu Jian,Zhou MengORCID,Lin Zhengyu,Luo MinORCID,Zhang Baohua,Xiao Leilei

Abstract

Currently, microplastic pollution poses a great threat to diverse ecosystems. Microplastics can potentially change soil characteristics and impact soil microorganisms, and then affect the production of CO2, CH4 and other greenhouse gases. However, experimental study on different ecological soils is lacking. Herein, we experimentally analyzed the CO2 and CH4 production potential affected by four types of microplastics in freshwater (Poyang Lake in Jiangxi province, paddy soil in Hunan province) and saltwater (Salt marsh in Shandong province, mangrove soil in Fujian province) ecosystems. Microplastics promoted CO2 production, of which polyethylene terephthalate (PET) had the greatest impact. In our study, the microplastics that had the greatest impact on CH4 concentration emissions were high-density polyethylene (1276 umol·g−1·L−1), followed by polyvinyl chloride (384 umol·g−1·L−1), polyethylene terephthalate (198 umol·g−1·L−1), and polyamide (134 umol·g−1·L−1). In addition, the largest impact on CO2 concentration emissions was displayed by polyethylene terephthalate (2253 umol·g−1·L−1), followed by polyvinyl chloride (2194 umol·g−1·L−1), polyamide (2006 umol·g−1·L−1), and high-density polyethylene (1522 umol·g−1·L−1). However, the analysis results based on one-way ANOVA showed that CO2 emission was most significantly affected by soil properties rather than microplastics types. In comparison, the influencing factor on CH4 production changed from soil types to the interaction between soil types and microplastics, and finally to the microplastics with the increase in incubation time. Further, by comparing CO2 and CH4 production and Global Warming Equivalent (GWE) affected by microplastics, freshwater ecosystems were more sensitive than saltwater. For all the soil types used in this study, high-density polyethylene had the greatest impact on CH4 production potential. In conclusion, our study provided basic data for further understanding the effects of microplastics on soil greenhouse gas emissions from different sources.

Funder

Youth Innovation Promotion Association

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference71 articles.

1. Global climate targets and future consumption level: An evaluation of the required GHG intensity;Girod;Environ. Res. Lett.,2013

2. Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems;Pugnaire;Sci. Adv.,2019

3. IPCC, Stocker, T.F., Qin, D., Plattner, G.K., and Midgley, P.M. (2013). The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Comput. Geom., 1535, 2013.

4. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status;Cross;Soil Biol. Biochem.,2011

5. Methanogenesis and methane emissions: Effects of water table, substrate type and presence of Phragmites australis;Brix;Aquat. Bot.,1999

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3